Skip to main content

Table 5 Predicted Results of Five Models for CR-POPF in Training Data

From: Machine learning-based prediction of postoperative pancreatic fistula after laparoscopic pancreaticoduodenectomy

Model

Methods

Threshold

AUC

Spe

Sen

NPV

PPV

1

RF

0.600

1.000

1.000

1.000

1.000

1.000

SVM-L

0.838

0.699

0.534

0.842

0.948

0.250

SVM-P

0.851

0.947

0.922

0.947

0.990

0.692

Logistic

0.210

0.810

0.816

0.737

0.944

0.424

2

RF

0.529

1.000

1.000

1.000

1.000

1.000

SVM-L

0.839

0.686

0.771

0.550

0.900

0.314

SVM-P

0.844

0.974

0.962

0.950

0.990

0.826

Logistic

0.154

0.793

0.714

0.800

0.949

0.348

3

RF

0.598

1.000

1.000

1.000

1.000

1.000

SVM-L

0.850

0.715

0.570

0.800

0.934

0.271

SVM-P

0.832

0.929

0.950

0.850

0.969

0.773

Logistic

0.171

0.782

0.700

0.800

0.946

0.348

4

RF

0.566

1.000

1.000

1.000

1.000

1.000

SVM-L

0.868

0.613

0.822

0.471

0.902

0.308

SVM-P

0.855

0.925

0.950

0.882

0.980

0.750

Logistic

0.241

0.653

0.921

0.412

0.903

0.467

5

RF

0.567

1.000

1.000

1.000

1.000

1.000

SVM-L

0.821

0.590

0.800

0.450

0.884

0.300

SVM-P

0.831

0.904

0.952

0.800

0.962

0.762

Logistic

0.129

0.760

0.600

0.850

0.955

0.288

  1. Threshold, values above and equal to threshold was classed into the case group; AUC, area under the curve; Spe, specificity; Sen, Sensitivity; NPV: negative predict value; PPV: positive predict value. RF, random forest; SVM-L, support vector machine with linear kernel; SVM-P, support vector machine with polynomial kernel, Logistic, logistic regression model