Skip to main content

Table 6 Predicted Results of Five Models for CR-POPF in Test Data

From: Machine learning-based prediction of postoperative pancreatic fistula after laparoscopic pancreaticoduodenectomy

Model

Methods

Threshold

AUC

Spe

Sen

NPV

PPV

1

RF

0.725

0.604

0.853

0.385

0.879

0.333

SVM-L

0.837

0.501

0.500

0.615

0.872

0.190

SVM-P

0.872

0.567

0.912

0.308

0.873

0.400

Logistic

0.170

0.563

0.691

0.538

0.887

0.250

2

RF

0.868

0.503

0.543

0.571

0.864

0.200

SVM-L

0.840

0.502

0.800

0.357

0.862

0.263

SVM-P

0.828

0.617

0.843

0.429

0.881

0.353

Logistic

0.178

0.643

0.829

0.500

0.892

0.368

3

RF

0.610

0.527

0.970

0.231

0.865

0.600

SVM-L

0.845

0.597

0.636

0.692

0.913

0.273

SVM-P

0.846

0.607

0.545

0.769

0.923

0.250

Logistic

0.146

0.618

0.758

0.538

0.893

0.304

4

RF

0.846

0.747*

0.574

0.917

0.975

0.275

SVM-L

0.853

0.609

0.471

0.917

0.970

0.234

SVM-P

0.855

0.627

0.735

0.667

0.926

0.308

Logistic

0.165

0.679

0.809

0.583

0.917

0.350

5

RF

0.950

0.586

0.300

0.929

0.955

0.210

SVM-L

0.827

0.609

0.529

0.786

0.925

0.250

SVM-P

0.866

0.639

0.400

0.929

0.966

0.236

Logistic

0.209

0.594

0.343

0.929

0.960

0.220

  1. Threshold, values above and equal to threshold was classed into the case group; AUC, area under the curve; Spe, specificity; Sen, Sensitivity; NPV: negative predict value; PPV: positive predict value. RF, random forest; SVM-L, support vector machine with linear kernel; SVM-P, support vector machine with polynomial kernel, Logistic, logistic regression model