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Abstract
Background  Fourier transform infrared spectroscopy (FTIR) is an analytical technique increasingly applied in 
biological analysis. This study investigates the application of FTIR to identify early biochemical changes, particularly in 
lipid profiles, in individuals undergoing Roux-en-Y gastric bypass (RYGB).

Methods  An observational study involving patients from a university hospital’s Bariatric and Metabolic Surgery 
Program, with evaluations performed before (T0) and two months after (T1) RYGB. Biochemical parameters, 
anthropometric data, and body composition were assessed. FTIR spectra were pre-processed and analyzed using 
Principal Component Analysis and Partial Least Squares Discriminant Analysis. The normality of the data was 
evaluated using the Kolmogorov-Smirnov test, followed by paired T-tests or Wilcoxon tests as appropriate. Spearman 
correlation analysis of spectral information with biochemical parameters was also performed. A significance level of 
p < 0.05 was set for all tests. The university hospital’s Research Ethics Committee approved the study (protocol CAAE 
59075722.7.0000.5071).

Results  The study evaluated 29 individuals (86.2% female) with a mean age of 41.2 ± 7.8 years. Significant differences 
were observed in anthropometric parameters and body composition (p < 0.001). Additionally, early improvements in 
the lipid profile were noted, with significant decreases in triglycerides, total cholesterol, and LDL cholesterol (p < 0.05) 
just two months post-surgery. FTIR identified correlations between biochemical parameters and specific spectral 
regions at T0 and T1. Notably, serum triglycerides showed a significant correlation with the lipid-specific spectral 
region (1796–1685 cm− 1) at both time points (p < 0.05).
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Background
Bariatric-metabolic surgery, specifically Roux-en-Y gas-
tric bypass (RYGB), continues to be indicated for the 
treatment of severe obesity [1]. RYGB involves modifica-
tions to the digestive system and consistently results in 
significant weight loss and improved quality of life [2]. 
However, weight loss after surgery can vary significantly 
between individuals, making it challenging to predict 
precisely how much weight someone will lose, especially 
in the long term [3]. Moreover, dietary restrictions and 
nutrient malabsorption resulting from RYGB can lead to 
substantial changes in anthropometric, biochemical, and 
metabolic parameters, potentially compromising nutri-
tional status [4, 5].

In this context, methodological approaches for nutri-
tional and prognostic assessment of patients undergoing 
RYGB, particularly in the first months after surgery, are 
imperative [6]. Early monitoring is crucial to promptly 
identify and address potential issues, improving long-
term outcomes. Fourier transform infrared spectroscopy 
(FTIR) has been increasingly applied in biological analy-
sis and is a possible tool for analyzing clinical parameters 
and detecting molecular alterations in health biomarkers 
[7]. This technique absorbs infrared radiation through 
covalent bonds in organic and inorganic molecules, gen-
erating characteristic molecular vibrations of specific 
functional groups. The resulting spectrum acts as a bio-
chemical fingerprint of the sample, providing detailed 
molecular information [8]. The infrared (IR) spectrum 
is divided into three regions based on wavenumbers: 
far-infrared (far-IR, < 400  cm⁻¹), mid-infrared (mid-IR, 
400–4000  cm⁻¹), and near-infrared (near-IR, 4000–
13000  cm⁻¹). The mid-IR region is the most commonly 
used for sample analysis, which was used in this research. 
The distinctive pattern produced by mid-IR radiation 
occurs because the sample absorbs specific frequencies 
corresponding to its chemical structure. The peaks of the 
mid-IR spectrum are unique for each sample, making this 
type of spectroscopy valuable for a wide range of applica-
tions [9].

Recent studies demonstrate the effectiveness of FTIR in 
identifying molecular alterations in blood samples asso-
ciated with diseases such as metabolic syndrome and 
cancer [10, 11]. Multivariate data analysis methods, such 

as Principal Component Analysis (PCA) and Partial Least 
Squares Discriminant Analysis (PLS-DA), are crucial 
for extracting meaningful information from FTIR spec-
tra. These techniques help identify relevant patterns and 
highlight molecular changes [12, 13].

A study using FTIR to analyze serum samples from 
individuals with and without obesity found differences 
in absorbance between the spectra of the two groups, 
particularly in the functional groups of proteins and lip-
ids [14]. Positive correlations have also been observed 
between FTIR spectra and biochemical parameters, such 
as aspartate aminotransferase, alanine transaminase, tri-
glycerides, glucose, total cholesterol, high-density lipo-
protein, low-density lipoprotein, and insulin.

Continuous patient engagement and effective post-
operative monitoring are crucial for the success of these 
procedures. Monitoring with FTIR spectroscopy facili-
tates the timely identification of lipid profile changes, 
providing essential insights into patients’ metabolic states 
post-surgery. This enhances adherence to post-surgical 
guidelines and enables prompt interventions when neces-
sary. While most studies present results six months to a 
year after bariatric surgery [1, 15], communicating initial 
findings is critical for understanding trends and making 
timely adjustments to treatment approaches, which can 
significantly impact long-term outcomes. Hence, this 
study aims to evaluate the use of FTIR in early monitor-
ing to identify alterations in the biochemical parameters 
of individuals undergoing RYGB.

Methods
Study design and participants
This prospective study was conducted with participants 
from the Bariatric and Metabolic Surgery Program of a 
university hospital in Brazil. From February to June 2020, 
individuals were invited to participate in the study volun-
tarily. The convenience sample included patients aged 18 
to 60 with a BMI > 40 kg/m² or > 35 kg/m² with comor-
bidities. Pregnant women and patients with pacemakers 
or other metallic structures were excluded, following the 
recommendations of the European Society for Clinical 
Nutrition and Metabolism (ESPEN) [16]. Evaluations 
were performed at an average of 24.0 ± 20.5 days before 
(T0) and 72.0 ± 19.5 days after (T1) RYGB. The study was 

Conclusion  FTIR can effectively monitor biochemical changes in RYGB surgery patients. The spectral range 
associated with lipid functional groups (1796 –1675 cm⁻¹) showed a significant relationship with serum triglyceride 
levels before and after RYGB. Additionally, various biochemical parameters exhibited strong correlations with other 
spectral regions, implying that the serum spectral profile can indicate biochemical variations at different post-surgery 
stages.

Trial registration  Brazilian Registry of Clinical Trials (Rebec), September 5, 2022, protocol RBR-26chs2g.
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approved by the Research Ethics Committee of the uni-
versity hospital, number CAAE 59075722.7.0000.5071, 
following the Code of Ethics of the World Medical Asso-
ciation (Declaration of Helsinki), to ensure the ethical 
conduct and protection of participants’ rights. Partici-
pants were fully informed of the study objectives and 
methodology, and informed consent was obtained from 
all individuals included.

Anthropometry and body composition
Body weight was measured using an anthropometric 
scale with an accuracy of 0.05  kg, and height was mea-
sured using a wall-mounted stadiometer with an approxi-
mation of 0.1 cm. BMI was calculated by dividing weight 
(kg) by height (m2).

Fat-free mass (FFM) and fat mass (FM) (kg) were 
obtained by bioelectrical impedance analysis using the 
Biodynamics 450® analyzer (Biodynamics Co., Shoreline, 
WA, USA) at a single frequency of 50 kHz. FFM was cal-
culated using the formula for people with obesity pro-
posed by Segal & colleagues [17] and expressed in kg. FM 
was calculated using the following formula: FM = total 
body weight – FFM, also expressed in kg.

Biological material and biochemical parameters
Blood samples were collected after an 8–12  h fast, and 
the serum was collected immediately after centrifugation 
and stored in a freezer at -80 °C for later analysis.

The following parameters were analyzed using com-
mercial kits (Wiener Lab, Santa Fé, Argentina): albumin; 
transthyretin (TTR); alpha-1-acid glycoprotein (AGP); 
C-reactive protein (CRP); aspartate aminotransferase 
(AST); alanine aminotransferase (ALT); alkaline phos-
phatase (ALP); glucose; triglycerides; total cholesterol 
(TC); high-density lipoprotein (HDL) and low-density 
lipoprotein (LDL).

Sample preparation and FTIR spectrum acquisition
Samples were thawed at room temperature (22  °C ± 0.2 
and 51% ± 2.1 humidity) for 30  min and homogenized 
using a vortex mixer. Then, 10 µL were pipetted onto 
aluminum plates and dried at room temperature for at 
least two hours in triplicate. Spectra were acquired in 
triplicate using the ALPHA II spectrometer (Bruker, Ger-
many) in the spectral range of 4000 to 400 cm− 1, with an 
attenuated total reflectance (ATR) accessory with a dia-
mond crystal, resolution of 4 cm− 1 and 32 scans for each 
background and sample. For each analysis, the diamond 
sampling window was cleaned with Milli-Q® water and 
70% (v/v) ethanol and dried with absorbent paper tissue.

Spectral data processing
The spectra were evaluated using Matlab software 
(R2023b). The mean of the spectral triplicates was 

calculated, followed by baseline correction (adaptive 
iteratively reweighted Penalized Least Squares algorithm 
- airPLS) [18] and smoothing with a Savitzky-Golay filter 
(5-point window). In addition, other preprocessing meth-
ods were tested to generate models with better group 
discrimination ability, such as vector normalization, mul-
tiplicative scatter correction (MSC), and second deriva-
tive (15-point window and second-degree polynomial).

Multivariate analysis
Multivariate analysis was conducted to discriminate the 
samples. For this purpose, the spectra were truncated 
and analyzed in the 3800–900 cm− 1 wavenumber range. 
PCA was used to explore interactions between samples 
and variables, identifying patterns and information that 
explain the most significant variation in the data [12].

A supervised PLS-DA approach was used to classify 
samples from groups T0 and T1. For the development 
of classification models, the data were randomly divided 
into training sets (70%) and test sets (30%), keeping T0 
and T1 from the same patient in either the training or 
test set.

The training samples were used in training and cross-
validation (Monte Carlo method) to determine the mod-
el’s optimal number of latent variables (LV). External 
test samples, however, were not included in training and 
were reserved for evaluating the model’s predictive abil-
ity. To evaluate the performance of the PLS-DA models, 
the sensitivity (SENS), specificity (SPEC), error rate (ER) 
and accuracy (ACC) parameters were used, measuring 
the ability to identify positive cases correctly, the ability 
to correctly identify negative cases, the false positive rate, 
the overall error rate and the overall accuracy of the clas-
sifications, respectively.

Furthermore, the PLS-DA model enables the interpre-
tation of relevant variables through an analysis known as 
the VIP score. A VIP value above 1 is commonly used as 
a threshold to identify variables with significant contribu-
tion [19, 20].

Statistical analysis
Analyses were performed using GraphPad Prism 8 soft-
ware. Data normality was tested using the Kolmogorov-
Smirnov test and expressed as mean ± standard deviation 
or median (25–75%). For comparative tests, data were 
analyzed by paired t-test or Wilcoxon test, with a signifi-
cance level of 5%.

Spearman’s correlation coefficient was calculated 
between the set of biochemical parameters and the cor-
respondingly selected spectral regions of interest, which 
are indicated in Table 1.

For each selected region, the area under the curve 
(AUC) of the mean spectra, pre-processed by second 
derivative (Savitzky-Golay method, 21-point window), 
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was calculated [25]. The correlations found were classi-
fied as weak (0.30–0.50), moderate (0.50–0.70) or strong 
(0.70-1.00) [26].

Results
The final sample comprised 29 participants (86.2% 
female, n = 25) who attended both scheduled evaluations 
before and after the surgery. Participants had a mean age 
of 41.2 ± 7.8 years and a mean height of 162.0 ± 8.7  cm. 
The most prevalent comorbidities found in the partici-
pants at baseline (T0) were hypertension (70.3%), type 2 
diabetes mellitus (42.3%), and dyslipidemia (60.4%).

Table 2 indicates that all anthropometric and body 
composition parameters decreased significantly between 
the two time points (p < 0.001). Regarding biochemical 
parameters, serum albumin, TTR, AGP, CRP, ALP, glu-
cose, triglycerides, TC, and LDL decreased significantly 
(p < 0.05). At the same time, AST increased significantly 
(p < 0.05). Notably, only serum TTR was below the refer-
ence value after RYGB.

Principal Component Analysis (PCA) with the first two 
main components accounted for 43.84% of the variance 
in the original data, indicating a tendency for separation 
between the groups. Most T0 samples were located on 
the negative side of PC1, while T1 samples were predom-
inantly on the positive side of PC1 (Fig.  1a). The load-
ings of the PCA model for the biochemical parameters 
(Fig. 1b) indicated that the main variables influencing the 
T0 samples towards the negative side of PC1 were TC, 
albumin, CRP, high-density lipoprotein (HDL), glucose, 
and triglycerides, which decreased after RYGB.

The spectral profile with the average spectra of the T0 
and T1 groups is shown in the Fig. 2. The spectra display 

characteristic bands of biological matrices attributed to 
proteins (mainly amide I and II, 1687 –1478  cm− 1), car-
bohydrates and amino acids (1195 –905 cm− 1), and lipids 
(3358 –2816  cm− 1, 1796 –1685  cm− 1, 1484 –1420  cm− 1, 
and 1195 –1133  cm− 1). A PCA model of the spectra, 
using the scores plot with the first two principal com-
ponents, explained 72.48% of the total variance of the 
original data. However, it did not show a separation of 
the samples from T0 and T1 in the principal component 
space, which is why this analysis was not presented.

However, employing Partial Least Squares Discrimi-
nant Analysis (PLS-DA) yielded a model with an accuracy 

Table 1  Spectral regions and molecular assignments
Spectral 
region

Wavenum-
ber (cm− 1)

Assignments Refer-
ence

1 3358–3188 Bond N-H (Amide A and B), 
bond O-H cholesterol

[21–23]

2 3011–2816 Bond C-H, lipids, proteins [21, 22]
3 1796–1685 C = O from lipids, aldehyde 

groups
[21, 22, 
24]

4 1687–1574 Amide I [21]
5 1574–1478 Amide II [21]
6 1484–1420 Lipids, cholesterol [21, 22]
7 1427–1356 Proteins [21]
8 1332–1211 Amide III, proteins [21]
9 1195–1133 Carbohydrates, phosphate 

groups (phospholipids), 
nucleic acids and amino acids

[21, 22]

10 1106–1046 Carbohydrates, phosphate 
groups (phospholipids), 
nucleic acids and amino acids

[21, 22]

11 964–905 Carbohydrates, phosphate 
groups (phospholipids), 
nucleic acids and amino acids

[21, 22]

Table 2  Biochemical, anthropometric, and body composition 
parameters before and after RYGB
Parameters T0 T1 p-value Reference 

values
Weight (kg) 114.1 

(104.8–
129.1)

97.3 (90.2 
-106.4)

< 0.001** -

BMI (kg/m²) 43.9 
(41.1–49.6)

37.5 
(33.9–42.5)

< 0.001** -

FFM (kg) 64.2 
(57.7–71.1)

57.1 
(53.7–63.3)

< 0.001** -

FM (kg) 52.8 
(46.8–65.1)

39.4 
(34.9–46.5)

< 0.001** -

Albumin (g/dL) 4.3 
(4.0–4.5)

4.1 
(3.9–4.2)

0.002** 3.5–4.8 g/dL

TTR (mg/dL) 23.1 ± 4.7 17.9 ± 5.6 < 0.001* 20–40 mg/dL
AGP (mg/dL) 108.6 ± 38.3 90.3 ± 32.5 0.05* 50–120 mg/dL
CRP (mg/L) 10.9 

(5.4–15.6)
3.6 
(2.1–6.4)

< 0.001** < 5 mg/L

AST (U/L) 18.0 
(15.5–23.0)

24.0 
(20.0–28.0)

< 0.001** 0–32 U/L

ALT (U/L) 25.4 ± 9.3 27.9 ± 10.7 0.271* 0–31 U/L
ALP (U/L) 200.5 

(166.0–
232.5)

192.2 
(169.5–
216.5)

0.019** 68–240 U/L

Glucose (mg/dL) 100.0 
(91.0–118.5)

90.5 
(85.0–
100.5)

< 0.001** 78–99 mg/dL

Triglycerides 
(mg/dL)

149.3 
(95.5–180.0)

93.0 
(75.5–
136.0)

0.002** < 150 mg/dL

TC (mg/dL) 192.5 
(154.5–
216.5)

154.5 
(134.5–
190.5)

0.002** < 190 mg/dL

HDL (mg/dL) 42.5 
(36.0–50.5)

41.0 
(34.0–48.0)

0.117** > 40 mg/dL

LDL (mg/dL) 113.9 
(89.2–138.9)

91.9 
(76.4–
120.7)

0.006** < 100 mg/dL

N = 29.   RYGB: Roux-en-y gastric bypass. T0: 29.3 ± 23.9 days before RYGB; T1: 
81.3 ± 32.9 days after RYGB. BMI: Body Mass Index; FFM: Fat-Free Mass; FM: Fat 
Mass; TTR: transthyretin; AGP: alpha-1-acid glycoprotein; CRP: C-reactive protein; 
AST: aspartate aminotransferase; ALT: alanine aminotransferase; ALP: alkaline 
phosphatase; TC: total cholesterol; HDL: high-density lipoprotein; LDL: low-
density lipoprotein. *Paired t-test. **Wilcoxon Signed Rank Test. The values are 
shown as median (interquartile range) or mean ± standard deviation, according 
to the data distribution. p ≤ 0.05 was considered statistically significant
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Fig. 2  Average spectra from FTIR of serum samples before and after RYGB. RYGB: Roux-en-y gastric bypass. T0: 29.3 ± 23.9 days before RYGB; T1: 81.3 ± 32.9 
days after RYGB

 

Fig. 1  Score plots and loading biochemical parameters before and after RYGB. RYGB: Roux-en-y gastric bypass. T0: 29.3 ± 23.9 days before RYGB; T1: 
81.3 ± 32.9 days after RYGB. Score plots PCA model (a). Loadings of PCA model with scaled biochemical parameter data (b). 1: Transthyretin (TTR); 2: 
Albumin; 3: C-reactive protein (CRP); 4: alpha-1-acid glycoprotein (AGP); 5: aspartate aminotransferase (AST); 6: alanine aminotransferase (ALT); 7: alkaline 
phosphatase (ALP); 8: total cholesterol (TC); 9: high-density lipoprotein (HDL); 10: low-density lipoprotein (LDL); 11: glucose; 12: triglycerides

 



Page 6 of 10Motta de Bortoli et al. BMC Surgery           (2025) 25:33 

of 77.8%. The model demonstrated an error rate of 5.0% 
for the training set and 22.2% for the test set (Table 3).

From the PLS-DA model, it was possible to evaluate 
the most relevant spectral variables for distinguishing 
between groups through the VIP score. Figure  3 shows 
regions with a VIP score > 1, indicating that regions with 
significant VIP scores are primarily attributed to lipids, 
proteins, and carbohydrates, demonstrating the contri-
bution of the entire spectral information.

Table 4 shows the correlation coefficients of the 
selected regions with the biochemical parameters. At T0, 

there was a positive correlation of regions 2, 3, and 9 with 
serum AGP, regions 4, 7, and 10 with serum AST, and 
regions 2, 3, 6, and 9 with triglycerides concentrations. At 
T1, there was a significant correlation between region 2 
and serum total and LDL cholesterol, and region 3 with 
serum TTR, ALT, AST, and triglycerides concentrations. 
Only triglycerides concentrations significantly correlated 
with region 3 at both time points.

Discussion
The spectral region characteristic of lipid functional 
groups, located at 1796 –1675  cm− 1 (region 3), showed 
a significant correlation with serum triglycerides con-
centration both before and after RYGB. This region also 
includes aldehyde groups related to oxidative stress [24]. 
Although the correlation between spectral regions and 
oxidative stress parameters was not evaluated in this 
study, these findings open new perspectives for investi-
gations into oxidative stress in obese patients undergoing 

Table 3  Performance measures and characteristics of the 
PLS-DA model for before and after RYGB
LV SENS (%) SPEC (%) ER (%) ACC (%)
7 95.0 95.0 5.0 95.0

88.9 66.7 22.2 77.8
RYGB: Roux-en-y gastric bypass. LV: latent variables SENS: Sensitivity; SPEC: 
Specificity; ER: Error Rate; ACC: Accuracy. Bold line: training subset; unbold line: 
testing subset

Fig. 3  VIP score analysis of spectral variables using the PLS-DA model
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surgical treatment, using mid-infrared spectroscopy to 
explore specific absorption bands.

Other biochemical parameters also showed signifi-
cant correlations with specific spectral areas, although 
not in the same region at both time points. The correla-
tions identified in region 2 (3011 –2816  cm⁻¹) with tri-
glycerides, TC, and LDL highlight the relevance of this 
region for investigating lipid dynamics and are consis-
tent with literature data reporting changes in lipid CH2 
antisymmetric bands (2975 –2952  cm⁻¹) in obese indi-
viduals enrolled in a bariatric surgery program com-
pared to eutrophic individuals (p = 0.037), associating 
these bands with structural and metabolic changes in 
lipids [27]. Previous studies observed a significant cor-
relation between serum triglycerides and the absor-
bance peak at 1457  cm⁻¹, corresponding to region 6 
(1484 –1420 cm⁻¹), as well as changes in the wavelength 
range of 1181 –1131  cm⁻¹, corresponding to region 9 
(1195 –1133  cm⁻¹), between obese individuals and con-
trols (BMI < 25) [14, 27].

FTIR demonstrated its ability to detect early changes 
in the lipid profile of individuals undergoing RYGB. This 
can be crucial for re-evaluating and potentially adjusting 
treatment approaches, as well as guiding early therapeu-
tic decisions in clinical settings. In a study that investi-
gated FTIR spectra of blood serum from individuals with 
and without obesity, significant differences in lipid com-
position were observed between the groups, identified 
by analysis of absorbance and peak positions associated 
with lipid functional groups, highlighting specific varia-
tions in wavenumbers 1750 cm− 1 (lipid C = O bonds) and 
2970 –2950 cm− 1 (lipid CH3 bonds) [14]. The authors also 
observed a significant correlation between serum triglyc-
erides and specific wavenumbers 1750  cm− 1 and 2700–
3000  cm− 1, respectively, to lipid C = O and CH3 bonds. 
These findings are similar to the present study and con-
tribute to a more comprehensive understanding of the 
use of FTIR for detecting alterations in lipid profiles in 
obesity.

The significant correlations of spectral information 
with serum triglycerides concentrations observed before 
and after RYGB may be partly explained by the ability of 
FTIR to detect vibrations of functional groups such as 
C = O and CH and, consequently, changes in the spectral 
regions associated with these compounds [21, 22, 28]. 
Lipids, especially triglycerides, represent a significant 
portion of blood serum content, and alterations in their 
molecular composition resulting from RYGB include 
modifications in the quantity and composition of cir-
culating lipids [29, 30]. Alterations in nutrient absorp-
tion and lipid metabolism induced by RYGB might be 
reflected in FTIR spectra.

Concerning the PCA analysis, a clear separation of 
serum samples from patients before and after RYGB was Ta
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not observed. Factors such as intra- and inter-individual 
variability may hinder the achievement of a clear spectral 
distinction at different time points [31, 32]. In the con-
text of RYGB, this suggests that variations in spectral 
characteristics exist even within a single individual before 
and after RYGB. Before surgery, factors such as inad-
equate diet, sedentary lifestyle, and health status may be 
reflected in FTIR spectra. After RYGB, despite improving 
health status, metabolic and hormonal changes and alter-
ations in post-surgical diet may contribute to the com-
plexity of spectra and specific sample characteristics [2, 
4, 33, 34]. However, the results from the PLS-DA analy-
sis suggest that considering the different spectral regions 
and their characteristics, FTIR was effective in differenti-
ating individuals before and after RYGB, identifying true 
positives (sensitivity), true negatives (specificity), and the 
overall rate of correct classification (accuracy). In a study 
evaluating the use of FTIR in the diagnosis of COVID-
19, a sensitivity rate of 85% and a specificity rate of 83% 
were observed, suggesting that FTIR is an essential tool 
for rapid, low-cost, and non-invasive diagnosis [35].

It is important to note that other significant correla-
tions were also observed, although with variations at dif-
ferent time points. These variations may be attributed 
to the complex metabolic and physiological changes 
induced by RYGB, which may affect the serum con-
centrations of biochemical parameters and, in turn, the 
spectral characteristics of serum samples, disrupting the 
relationships between spectral characteristics and evalu-
ated parameters [2, 4, 31, 32].

The significant changes in anthropometric and body 
composition parameters, as well as the changes in bio-
chemical parameters, are consistent with the expected 
effects of RYGB [36, 37]. We observed that serum con-
centrations of CRP, glucose, TC, and LDL, altered before 
RYGB, were within the normal range after surgery. These 
findings highlight the efficacy of RYGB in improving 
metabolic and lipid profiles, contributing to an overall 
improvement in health status. However, it is essential 
to note that the serum concentration of TTR, a protein 
potentially used to identify nutritional risk [38], was 
below the reference value at T1. In this context, although 
not observed in this study, new perspectives could be 
opened for FTIR in evaluating molecular changes charac-
teristic of protein nutritional status.

We acknowledge the importance of biochemical 
analysis as the gold standard for assessing the health 
conditions of bariatric patients. However, our data dem-
onstrate that, even in the absence of established refer-
ence values, FTIR spectroscopy emerges as a promising 
approach. It offers valuable insights that can complement 
traditional methods, serving as an auxiliary tool for ana-
lyzing molecular changes in response to RYGB.

This study has certain limitations, as the small sam-
ple size may have reduced the statistical power of some 
analyses, limiting the generalizability of the results and 
constraining the interpretation of the evaluated sample. 
Additionally, the chemometric model may have been 
potentially influenced by patient comorbidities. Further-
more, data collection was affected by the suspension of 
elective surgeries funded by the Brazilian Unified Health 
System during the COVID-19 pandemic and the lack of 
follow-up during the first two years, resulting in devia-
tions from the planned time points. Participant dropouts 
for personal reasons further contributed to the reduced 
sample size.

The study followed hospital protocols requiring an 
8-to-12-hour fasting before lipid profile measurement. 
Although variations within this fasting range may intro-
duce minor fluctuations in lipid levels, evidence suggests 
that these differences are minimal and unlikely to signifi-
cantly impact the overall lipid profile interpretation [39, 
40]. At the same time, evidence highlights the impor-
tance of standardizing the fasting timing before sample 
collection to manage variability [40].

While FTIR provides a rapid and efficient method for 
lipid analysis, it has intrinsic limitations should be con-
sidered, such as potential interference from overlapping 
absorbance bands, variations in sample types [41], and 
the need for calibration to ensure accurate results. Nev-
ertheless, the laboratory where the analysis was con-
ducted adhered strictly to the equipment manufacturer’s 
guidelines for sample preparation, handling, storage con-
ditions, and regular equipment calibration and validation 
to ensure data accuracy and reliability.

Conclusion
The results indicate that FTIR can effectively monitor 
biochemical changes in patients undergoing RYGB sur-
gery. The spectral range associated with lipid functional 
groups (1796 –1675  cm⁻¹) showed a significant rela-
tionship with serum triglyceride levels before and after 
RYGB. Additionally, various biochemical parameters 
exhibited strong correlations with other spectral regions, 
implying that the serum spectral profile can indicate bio-
chemical variations at different stages post-surgery.
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